Panoramaprogrammet Hugin

Öppen källkod

Hugin bygger på öppen källkod vilket innebär att koden är fri att förändra och att vem som helst får använda den utan att behöva betala. Med Hugin kan man bygga ihop bilder och på så vis få bilder med högre upplösning. Man inte heller bära med sig ett vidvinkelobjektiv eftersom man fotograferar delar av motivet för sig.

I Hugin finns även möjlighet till att skapa objektivkorrigeringsprofiler, se filmklippet nedan. Det är bland annat så projektet Lensfun skapar sina fria objektivkorrigeringsprofiler som används i RawTherapee och darktable.

Förinställningar

I file>Settings kan man under fliken Allmän ändra till svenska och starta om. Eftersom jag har 64GB i ramminne har jag utökat cache-minnet till 50GB. Har man 4GB ram bör man använda 3GB cache och har man 16GB ram bör man använda 10-12GB ram.

Under fliken Program har jag aktiverat GPU, d.v.s. grafikkortsacceleration. Det betyder att grafikkortet tar över beräkningar som processorn annars skulle ha gjort. Fördelen är att processen snabbas upp. Nackdelen är att Hugin kan krascha.

Enblend och Enfuse är själva motorerna i Hugin. Dessa jobbar med en tråd om man inte väljer enblend-mp och enfuse-mp i stället för enblend och enfuse. Min dator har 32 trådar och ska man begränsa sig till 1 tråd tar det lång tid att processa bilder.

Under grundvärde har jag tillagt

--fine-mask

för att få bort en bugg. Har man problem med röda, gröna och blåa pixlar i den färdiga bildens skuggor lägger man till

--no-ciecam

vid både Enblends och Enfuses grundvärden.

Använda programmet

Bilder på Kronborg slott nedan är vad jag kommer använda mig av. Totalt rör det sig om 38 bilder.

Välj Läs in bilder och markera samtliga bilder.

När bilderna är inladdade väljer man Justera. Hugin parar nu ihop bilderna med varandra.

När den är färdig väljer jag fliken Beskärning och autobeskärning. Vill jag ha med litet av det svarta fältet drar jag ut beskärningsrutan. Behöver man vrida på motivet kan det vara bra att ha marginaler.

Gå nu tillbaka till fliken Assistent och klicka på Skapa panoramabild.

Kronborg slott, bestående av 38 bilder och runt 40 megapixlar.

Bild överst: Cristian Marchi (CC BY-SA 3.0)

Kustbevakningen dyker i Rönne å

Kustbevakningen letar mordvapen i Rönne å

I februari 2018 dök kustbevakningen från Kristian II:s bro i Ängelholm, vilket omskrevs av de lokala tidningarna.

I dag fortsatte kustbevakningen med din sökinsats, denna gång från Ängavångsbron. Vad det är kustbevakningen söker efter håller den fortfarande hemligt.

Välj rätt ISO med din Canon

Har du hört följande uttryck?

  • ISO-talet bestämmer hur känslig din sensor ska vara för ljus. Ett högre ISO-tal gör din sensor mer ljuskänslig.

  • ISO 50 med en Canon är bättre än ISO 100 om man vill få längre slutartid.

  • Högre ISO ger mer brus.

Det är tyvärr inte så enkelt.

Sensorns känslighet

Om man börjar med första påståendet har en sensor från Canon enbart en känslighet som fångar upp ljus och gör en signal av det. Därefter förstärks signalen analogt, omvandlas till digital signal innan den skickas vidare för sparas till en råfil. Vid ISO 125, 160, 250, 320, 500, 640 osv vet man att signalen även mörkas ned eller ljusas upp efter att den digitaliserats.

Canon och ISO 50

Angående ISO L (50) utgår det från ISO 100. Påståendet att man kan använda ISO 50 med en Canon för att få längre slutartid än med ISO 100 stämmer inte vid fotografering i råformat eftersom bägge utgår från just ISO 100. Anser du att just din kameramodell från Canon fungerar annorlunda skickar du in två råfiler med ISO 50 och ISO 100 och följer nästa steg.

Att själv testa är ett enkelt sätt att kontrollera. Använd samma slutartid och samma bländare. Därefter kan man använda program som RawTherapee, darktable, Dcraw eller Rawdigger för att själv se skillnaden bilderna emellan. Råfiler från 6D finns här.

f/22, slutartid på 1/4 sekund och ISO L (50).
f/22, slutartid på 1/4 sekund och ISO 100.

I skärmdumparna ovan och med råfilens högdagervarning aktiverad syns det att de båda  råfilerna klipper högdagern på samma plats och att bilderna i det närmsta är identiska, trots att den övre borde vara ett steg mörkare.

f/22, slutartid på 1/4 sekund och ISO L (50). Histogrammet är ett råhistogram.
f/22, slutartid på 1/4 sekund och ISO 100. Histogrammet är ett råhistogram.

I RawTherapee kan man skåda ett logaritmiskt råhistogram. I de två bilderna ovan är bägge varandra identiska.

Även din kamera har ett inbyggt histogram men det bygger på jpg-filen och inte råfilen. Jpg-filens histogram ger ett hum om hur man ligger till men kan skilja ett steg eller mer jämfört med råfilen.
Vill man ha ett råhistogram i sin kamera krävs det mjukvara såsom Magic Lantern.

Verktyget Hraw ger en god uppskattning över hur stort det dynamiska omfånget är.

Med verktyget Hraw har jag jämfört de bägge råfilernas dynamiska omfång. ISO L (50) gav nedskalat till 8 megapixlar 12.0848 steg och ISO 100 gav nedskalat till 8 megapixlar 12.0893 steg.

Brus

Brus i bild kan man få av flera orsaker.

Fotonspridningsbrus  beror på att en del av fotonerna inte följer resten av strömmen. För att kalkylera vilken mängd av fotonerna som avviker tar man roten ur antalet fotoner. Har man 10000 fotoner blir det runt 100 som avviker. Har man 100 fotoner blir det 10 som avviker. Har man 10 fotoner blir det 3,16 som avviker.
Ju mer ljus vi har, desto fler fotoner avviker och ger brus. Det märks dock inte eftersom mängden fotoner som följer strömmen är så många fler. Mer ljus är alltså alltid bra.

Utläsningsbrus beror på kretsarna efter sensorn. Signalen som sensorn fångade upp förvanskas på vägen. Med Canon 80D och dess sensor placerade Canon A/D-omvandlaren (analog signal till digital signal) direkt på sensorn och kunde på så vis förkorta vägen och därmed minska utläsningsbrus.

Mönsterbrus,  som dels beror på utläsningbrus och dels på att delar i sensorn skiljer sig åt i effektivitet. Även om det inte finns mycket av mönsterbrus syns det tydligt då det mänskliga ögat uppfattar mönster och bandning lättare. Delar av mönsterbruset kan vara lika från bild till bild, medan andra delar kan skilja sig åt mellan tagningarna. Genom att använda sig av en svartbild, d.v.s. en extrabild med samma inställningar men med objektivlocket på, kan man subtrahera det mesta från mönsterbruset från originalbild.

Termiskt brus ökar med temperatur. Ju högre temperatur sensorn får jobba i, desto mer brus blir det i bild. Låt kameran kylas ned mellan exponeringarna om du t.ex. tar långa exponeringar nattetid.

Högre ISO lägre brus?

4 sekunder, f/5 och ISO 100. Uppljusad till samma nivå som ISO 1600 nedan. Canon EOS 300D.
4 sekunder, f/5 och ISO 1600. Canon EOS 300D.

Att det bland gemene man sägs att högre ISO ger mer brus beror på att färre fotoner ger mer synligt brus. Högt ISO använder man sig av när det finns få fotoner att fånga in, se fotonspridningsbrus högre upp.

Högre ISO ger alltså mindre brus per foton. Å andra sidan kan inte högre ISO (1600) samla in lika många fotoner som lägre ISO (100) kan. Kontentan är att man vid mycket ljusinsamling tjänar på att använda låga ISO-tal och vid dunkla ljusförhållanden tjänar på att använda högre ISO-tal.

ISO-steg

Canons äldre kameror såsom Canon EOS D30 och Canon EOS 300D har hela ISO-steg, d.v.s. man stegar mellan ISO-talen från 100, 200, 400, 800, 1600.

Nyare kameror har utöver dessa hela steg även tredjedelssteg såsom ISO 125, 160, 250, 320, 500, 640, 1000, 1250 osv. Dessa tredjedelssteg utgår från de hela stegen och är digitala uppljusningar eller nedmörkningar. T.ex. utgår ISO 160 och ISO 250 från ISO 200 medan ISO 320 och ISO 500 utgår från ISO 400.

Åtta råfiler mellan ISO 100 och ISO 500 analyserade.

Enligt utvecklare hos Magic Lantern, samt påvisat via verktyget Hraw, ger ISO 160, ISO 320 och ISO 640 ett större dynamiskt omfång, närmare bestämt 0,1 steg mer högdager än vad ISO 200, ISO 400 och ISO 800 skulle ha gjort. Detta gäller bland bland annat för M3, M5, M6, 30D, 40D, 60D, 70D, 80D, 7D, 7D II, 6D, 6D II, 5D III, 5D IV och 1D IV.

I bilden ovan syns 6D:

  • _MG_3501.CR2 och ISO 100, DR@8=12.1342 steg.
  • _MG_3502.CR2 och ISO 125, DR@8=11.7949 steg.
  • _MG_3503.CR2 och ISO 160, DR@8=12.1922 steg.
  • _MG_3504.CR2 och ISO 200, DR@8=12.1321 steg.
  • _MG_3505.CR2 och ISO 250, DR@8=11.7998 steg.
  • _MG_3506.CR2 och ISO 320, DR@8=12.0179 steg.
  • _MG_3507.CR2 och ISO 400, DR@8=11.9670 steg.
  • _MG_3508.CR2 och ISO 500, DR@8=11.6504 steg.

För kameror såsom 5D, 5D II, 1D II, 1Ds II, 1D III, iDs III  vinner man ingenting utan tvärtom förlorar.

ISO 125, 250, 500 osv är oftast ett sämre alternativ, med bland annat 1D X, 5Ds och 5DsR som undantag med en annan typ av design.

ETTR

Har du hört talas om exposure to the right, ETTR? Det innebär att man, i råformat, samlar in så många fotoner man kan tills sensorn blir mättad med ljus. Om man inte gör det innebär det att man får mer synligt brus i skuggorna än om man skulle kört ETTR, samt att man inte skulle kunna nyttja kamerans hela dynamiska omfång.

Tillfällen när ETTR inte är att rekommendera är när man når kamerans begränsning där det inte längre är någon nytta med ETTR utan det tvärtom går att åtgärda i datorn efteråt. Med en 5D II går gränsen vid ISO 1600.

Om scenen man fotograferar har ett större dynamiskt omfång än vad kameran har blir det också svårt att praktisera ETTR. Antingen offrar man högdager eller så offrar man skuggor. Vill man ingetdera går man över till alternativa metoder, såsom blixtupplättning, HDR, eller Dual ISO.